If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x-3200=0
a = 1; b = 40; c = -3200;
Δ = b2-4ac
Δ = 402-4·1·(-3200)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-120}{2*1}=\frac{-160}{2} =-80 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+120}{2*1}=\frac{80}{2} =40 $
| 2(2n+1)=7(6n+4)+4 | | 1|2(n-24)=1|8(n+32)-4 | | 1=3/2+y | | 1=3/2y | | 13x^2+8x+40=0 | | 4v+2=2(v-2) | | 1|12(n-24)=1|8(n+32)-4 | | 7/5y=28 | | 50=6w-4 | | -2(u+2)=-5u-28 | | 2x+15=36-5x | | 4(6x+8)=24x | | -35=-5/7v | | -x^2+17x-120=0 | | 6k-1k=-4k | | 5x=5(x+6) | | -2.7=10.1+u÷8 | | 9(9x+1)=81x | | 24x+4=4(6x+1) | | -2.7=10.1+u/8 | | 35x+45=5(7x+9) | | -7+x=8×+3 | | 5(7x+2)=35x | | -7x=19-(-9) | | -(3x—12)=9x-4 | | 0.16(y-3)+0.20y=0.14y-1.8 | | 25x+35=5(5x+7) | | 0.9y=9.9 | | 120+15x=180 | | 5n+4=60 | | 14-3(5t-12)=1-(20t+1)14 | | 1/3x-3=68 |